This is a USA pottery frit, Ferro now calls it Frit 3110-2.
Soft sodium borosilicate frit for glazes. Since it is a good source of Na2O it is very commonly found in glaze recipes all temperatures. It has a high thermal expansion, therefore useful for substitution into glazes that are shivering (e.g. the G1916Q recipe trades it for frit 3195 to increase expansion). Often used in crystal glazes.
Since it is somewhat soluble some precipitation can occur in glazes stored for lengthy periods.
This frit can be very useful to reduce the feldspar content in glazes (since many high feldspar glazes have low clay content and therefore poor slurrysuspension properties and dried hardness). The chemistry of this frit is similar to a feldspar (but with low alumina and CaO in addition to the alkali fluxes). That means if least part of the feldspar can be substituted for Frit 3110 you can increase the kaolin (to supply the alumina) and thereby improve slurry properties (we have done this with excellent success up to cone 10R). In addition, you will be able to reduce the amount of troublesome calcium carbonate. Of course, glaze chemistry is needed to calculate how to do this, there are videos at digitalfire.com on how to do this.
It can be used with 3403 for bright and semi-matte wall tile glazes.
This frit is also good for use as a body flux to substitute for feldspar, much lower vitrifying ranges are possible. However, it is somewhat soluble, so bodies should be used soon after making them. Adding only a small amount, e.g. 5%, to a terra cotta body not only greatly improves the maturity, but can potentially reduce crazing and make glazes easier to fit.
Cone Range: 08-8
Fusion temperature: 1400F
Flow temperature: 1700F
This frit has a very low melting point like 3124, 3134, 3185.
Formerly Frit 1078
A USA pottery frit. A shortage in NA early 2021 led many companies to search for alternatives, Fusion Ceramics inherited some with their F-12. During the process of moving production from a facility in Washington, PA to a state-of-the-art factory in Villagran, Mexico they had to work through a variety of issues (such as Covid 19, raw material shortages, transportation issues and production problems), but they were in full production in April, 2021 (and catching up with back orders).
Ferro now calls it Frit 3134-2. This is a popular frit and has been used for many years as a general purpose melter across all tempreatures. Equivalents are made by many frit companies. Ferro says that it is "intended for use as a lime and borate source in partially fritted glazes, lead bisilicate glazes and low cost hobby glazes cone 06-10". But from the viewpoint of ceramic chemistry, this frit is a great 'oxide warehouse', it is useful in so many kinds of glazes, we often use it to showcase the value of Frits in formulating and adjusting glazes as (formulas of oxides rather than recipes of materials).
The reason this is billed as useful in partially fritted glazes is because of how valuable it is in supplying B2O3 (raw B2O3 sources have many issues). It gives us lots of boron along with CaO and Na2O (which most glazes need) but no Al2O3 (so it can be supplied from clay to harden and suspend the slurry).
Several factors make this frit's chemistry so attractive:
-It has almost no alumina. That means, as already stated, that Al2O3 can be supplied by clay, giving the glaze better suspension and hardening properties. Conversely, adding Frit 3134 to a recipe (to supply boron for example) does not require reduction of clay content.
-It has high sodium. That means that it's presence enables reducing feldspar content which in turn provides even more opportunity to source Al2O3 from kaolin or clay.
-It has high boron. That gives it a lot of bang-for-buck as a flux, especially in middle temperature.
-It has a very high CaO content. That makes it useful for developing chrome-tin pinks and maroons. CaO-sourcing raw materials do not normally melt at low temperatures but a frit of this chemistry (high soda and boron) does.
The high expansion of this frit is quite useful since it can be used in a frit blend to create low-temperature glazes with adjustable thermal expansion. The high boron means it can tolerate a very high alumina content from other materials, especially clay. For example, 40 Frit 3124, 40 Frit 3134 and 20 Kaolin is expansion-adjustable since the Frit 3134 can be increased at the expense of 3124 if the glaze is shivering and vice versa if it is crazing.
This frit is often used effectively as part of the strategy to substitute for Gerstley Borate in glazes. It is valuable because it contains lots of sodium and calcium while at the same time sourcing the B2O3. This often enables reducing the feldspar content in the glaze, and then replenishing the oxides contributed by both it and the GB with this frit and kaolin (the latter of which acts to suspend and harden the glaze slurry).
Since Frit 3134 contains no Al2O3, it is not a completely stable glass, it can dissolve in glaze slurries over time and precipitate (to turn the water brown). It is often possible to reduce its amount in favor of the more balanced Frit 3124 (where the glaze has significant feldspar). However, if you drive the clay content too low to accommodate the Al2O3-containing Frit 3124 (using glaze chemistry), you may find the extra hassle of poorer application properties and powdering worth enduring some precipitation issues.
Sub: See also: TAM C-14, General 367-A, 4508
Fusion Frit F-12 has proven a good substitute for this.
No potter or manufacturer should be without this frit. (in spite of how expensive it is). Frit 3249 is valuable because it introduces a form of MgO (the lowest expansion flux) that will melt at much lower temperatures than MgO-sourcing raw materials like dolomite or talc (trading some of the high-expansion fluxes in a glaze for MgO is the most effective way to reduce glaze thermal expansion). Also, high MgO is the mechanism of some of the best matte glazes and a frit like this is often the best way to source it.
Ferro specifies this as a bonding agent for grinding wheels. However, frits are sources of oxides, if one supplies the oxides we want and melts well then it is fine regardless of its label. The process of working this frit into a recipe, to supply some or all of the MgO, is among the most fascinating demonstrations of glaze chemistry. The chemistry of Frit 3249 can be inconvenient at times because it can often oversupply the B2O3 if being used to supply all of the MgO needed.
Fusion frit F-69 has the same chemistry as this, they label theirs a "ceramic frit" (and it has the lowest expansion of any they make). Most other frit manufacturers also make a frit of similar chemistry.
There is some question about how well Ferro maintains the chemistry of this product (and thus whether it is suitable for ceramics). Some users have found variations in the surface quality of their glazes using this. That being said, we have found this one to be less soluble that the equivalent Fusion frit (F-69). And far less expensive.
This frit does present an anomaly with regard to its use as a source of MgO (instead of raw materials like dolomite and talc). While this generally works well in transparent and stained glazes, producing better clarity and melting, it also seems to attack the aesthetic mechanisms of some reactive glazes that rely on rutile. It is not completely clear why.
This is a USA pottery frit. Ferro now calls it Frit 3124-2.
This borosilicate frit is high in calcium. It melts are very low temperatures and among the most useful of all common frits because of its glaze-like balanced chemistry. This frit has a chemistry somewhat similar to 3134 (the latter adds CaO, Na2O and B2O3 at the expense of all the Al2O3 and some SiO2.
Its stated intention is a calcium boron source for partially fritted glazes for wall tile and pottery, also in lead bisilicate dinnerware glazes in the cone 3-5 range. However, within pottery circles, like frit 3195 this frit is almost a complete glaze at low temperatures (requiring only a 10-20% addition of kaolin to suspend it). It has a medium thermal expansion and fits most bodies. However if glazes shiver some of this can be traded for Frit 3110. If they craze some can be substituted for Frit 3249. Frit 3124 is often added to glazes to make them melt lower, this works well because it is quite balanced already as a glaze, the net effect of adding it is to increase the boron content without overly disrupting the balance of other oxides.
Since the chemistry is high in CaO, it will affect browns and iron oxide colors.
This is a USA pottery frit, it is very common in North America and there are equivalents available around the world. Ferro now calls it Frit 3195-2.
Like Frit 3124, this can be a complete cone 06-02 leadless pottery glaze with the addition of a little kaolin to suspend. Adding more kaolin and silica will produce glazes suitable for higher temperatures. And 85:15 frit:kaolin mix of this produces a transparent cone 04 base. This 85:15 blend is not mirror-glossy, having a slightly matte finish. Since Frit 3195 is middle-of-the-road thermal expansion the 85:15 mix will fit most bodies. The G1916Q expansion-adjustable recipe employs this frit (mixed with Frit 3110 and 3249).
This frit works well at stoneware temperatures as a source of boron, all the other oxides it supplies are needed and none are excessive.
If used in too high a percentage, this frit can push the boron too high for use in underglaze colors.
A chart from Ferro 1962 listed Na2O 10.3, B2O3 15.8.